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Dynamics of coupled light waves and electron-acoustic waves
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The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron
plasma is considered. The interaction is governed by a pair of equations comprising dirBmhrtike equa-
tion for the light wave envelope and a drivéby the light pressupeelectron-acoustic wave equation. The
newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave
solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are

pointed out.
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[. INTRODUCTION is the electron mass. The phase velocity of the EAWS is

between the thermal speeds of the hot- and cold-electron

About four decades ago Karpmam,2] investigated the species, and the wave frequency is larger than the ion plasma
nonlinear interaction between light and ion-acoustic waves ifrequency. Therefore, the ions do not participate in the EA
an unmagnetized plasma. The Karpman equations admit botiave dynamics and they form only a neutralizing back-
envelope soliton and shocklike solutigris-3]. On the other ground. The ratio between the cold electron and ion number
hand, light waves can also nonlinearly interact with electrordensities is supposed to be much larger than the square root
plasma wavesgthe Langmuir wavesthrough the light pres- of the electron to ion mass ratio.
sure. The resulting interaction is then governed by a nonlin- In this paper, we consider the nonlinear interaction be-
ear Schrdinger equation for the light and a Langmuir wave tween light and electron-acoustic waves in a two-electron
equation containing light waves as a driver. Studies of nonplasma with a fixed ion background. We first derive the light
linearly coupled light and ion-acoustic/Langmuir waves arewave equation in the presence of the density perturbations of
of practical interest with regard to the understanding of thehe EAWS. The equations for the latter, including the light
complex cooperative phenomena in laser-plasma interactiongave pressure, are obtained by using the continuity and mo-
[4-6], in plasma based charged particle accelerdftfisand ~ mentum equations for the cold electrons as well as a modi-
in space plasma8-10. fied Boltzmann electron number density for the hot electrons,

However, there is conclusive evider[ég9—13 that labo- and Poisson’s equation. The drivéby the light pressupe
ratory and space plasmas can contain two distinct groups @flectron-acoustic wave responses are significantly different
electrons. In such plasmas there are electron-acoustic wavéem those involving Langmuir waves. The newly derived
(EAWSs) [14-14 in which the restoring force comes from equations for nonlinearly coupled light and EAWs can be
the pressure of the inertialess hot electrons, and the mass v$ed to study the formation of light envelope solitons, col-
the cold electrons provides the inertia. The wave frequencjapse of light, and plasma density holes trapping light.
o and the wave numbdy are related by

II. DERIVATION OF THE NONLINEAR EQUATIONS

w= L We consider a uniform plasma containing large amplitude

(1+KA\3,)Y? light waves that are nonlinearly interacting with EAWSs. The
plasma constituents are singly charged ions, as well as hot
where Co=\phw, iS the electron-acoustic speedy, and cold electrons. The dynamics of the light waves is gov-

= (Ty/4mnnee?) Y2 is the electron Debye length involving the €Med by Maxwell's equation
temperaturdl, of the hot-electron component with the equi-
librium densitynyo, wpe=(47nee?/m)2is the plasma fre- vxpe 17, 1 R
guency of the cold-electron component with the equilibrium C c at’
densityn.g, eis the magnitude of the electron charge, amd

in which the wave magnetic and electric fields &eV

XA and E=—c 19A/dt, whereA is the vector potential

*Also at the Department of Plasma Physics, Untgversity, — andc is the speed of light in vacuum. Furthermore, the elec-
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J=—e(n,+n)v, 2 d d B , He—V)
gt Ve e VI

wheren;, and n. are the number densities of the hot- and
cold-electron components, amds the electron quiver veloc-  \herey, is the fluid velocity of the cold electrons ant,

ity in the light fields. It is given by =(T,/m)*2is the thermal speed of the hot electrons. Equa-
tions (8)—(10) are closed by means of Poisson’s equation
v _ e E— e JA 3
gt m_ mcat’ FLa
Noh—5 =Np+Nc6. (11)
which yields Jz?
e We consider two kinds of plasma slow responses associ-
V= m_cA' (4) ated with the electron-acoustic waves. First, we neglect the

nonlinear terms in the plasma slow response and obtain from
We decompose,=nuo+nLs and n,=ng+ngg, Where Egs. (8)~(11) with [o—¥|<1,
Nhot Neo=Ng andnyg(Nn.g) is the density perturbation of the 5 5 4
hot- (cold-) electron component involved in the EAWSs, and a__cz‘?__)\z J
T Lr P A

combine Eqs(1)—(4) to obtain at?
PR vips a2 L S Yl [V (12
——c°VA+ A+ NA=0, 5 = -
a2 © AT Oy ® omeT, | at2 e

where we have introduced a Coulomb galgeA=0 and Equations(7), (11), and(12) are the desired equations7]
denotedwp=(wr2,h+ wgc)l/Z, wph:(47.mh0e2/m)1/2, andN  governing the dynamics of coypled _Iight_ and Iingar EAWS.
= (Nps+ Nee)/No=Np+N.5, with Ny=nne/Nho,N.  The present system of equations significantly differs from

= Nes/Neo @Nd 8= Neg /MNip. that of Karpmar{1,2]_. _ _

Assuming that the nonlinear interactions between the light S€cond, we consider the dynamics of the nonlinear EAWs
and electron-acoustic perturbations produce a slowly varyind the presence of light waves. Here, we write
light envelope, we represent 1

~p—T4+ —p?
A= y(7,2)(x+iy)exp —iwet+ikoz), (6) Nn=e=r g% 13

where wy=(k3c?+ w )1/2 is the light wave frequency, and retain the nonlinear fluX.v. and the convective non-
linearity v dv /az We then normalize the time and space

variables byw pand \py, the fluid velocityv. by Vi,
introduce the stretched variables=eY4z—\7) and 7

(7,2) is a slowly varying envelope, andandy are the unit
vectors along the andy axes, respectively. Inserting E@®)
into Eq. (5) and invoking the WKB approximation, viz.

|0yl 37| <woy, we obtain the modulated light wave equa- = €1, expandN;, Ve(=ve/Vry), andg 'g a power series
tion, of the smallness parameter, and takee?|y|%/2m?c?V2,
2, Hence to lowest order, we have a set of equations that
9 9 2(92,/, , gives the_z constant = /6. To next order i_ne, we have a set
2iwg| — P +Ugaz) y+c E—wthg//:O, (7)  of equations that are combined to obtain
3
wherev 4= koC% wq is the group velocity of the light wave. [?_(P \/_— a__ @90 i =0, (14)
Next, we present the relevant equations for the EAWS in Its 2 g¢° 28 0§
the presence of the light wave pressure. We have a Boltz-
mann electron density for the hot electrons, which is a Kortweg—de Vries equatigi8] without a light
wave driver. It turns out that within the scheme of our time
Np=expe—V¥) — 1, (8)  and space scales, the nonlinear EAWSs are decoupled with the

light waves. However, the nonlinear EAWSs affect the light
where p=e¢/T,, and ¥ =e?|y?|/2mc®T,, are the normal- envelopes since in Eq7) the interaction potential is of the
ized electron-acoustic wave and ponderomotigee to the form N=g2p/ &2
light wave pressunepotentials, respectively. The continuity ~ The newly derived coupled equations in Sec. Il may admit
and momentum equations for the cold electrons are interesting envelope soliton solutions comprising density
cavities trapping light waves. They also describe the collapse

Ne 4 of light waves even in one space dimension. The collapse
ot + 5[(1+ Ne)ve]=0 ©) occurs when the light waves are modulated by nonresonant
long-wavelength(in comparison with\ py, electron-acoustic
and perturbations withhe/ dt+# Cede/dz. Here, we have
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ely? by inserting the steady-state soliton solution of Edf), viz.
b~ , (15  @=—ggsech(¢{/\g), where Q is a nonlinear frequency
2m¢c* shift, ¢, is the minimum potential af=|z—v,7=0 andh

is the width of the soliton. It turns out that the light waves
can be quantizef20] in a given nonlinear electron-acoustic
wave potential.

so that Eq(7) takes the form

2 2 2 2
¢+C28—dj— wph lpa |l/i| :O
072 8mn,mc ' 9z2 '

+ —
o7 V992

2| (O]
(16 I1l. SUMMARY

which contains a nonlocal nonlinearity. The latter is respon- In summary, we have considered the nonlinear interac-
sible for the light wave collapse, as discussed by Litvak andions of large amplitude light waves with the electron-

Sergeev [19].  Specifically,  substituting #=(z  acoustic perturbations in a two-electron temperature plasma.
—vg7)expizn7) into Eq. (16), one finds a cusp-shaped light It is shown that the interaction gives rise to an envelope of

wave soliton in the steady state. We have light waves whose dynamics is governed by a nonlinear
s o Schralinger equation. The light wave envelope, in turn, af-

5 o 27w | |2 fects(is affected by the propagation of the line&nonlineajy

| ]?=ygsech 2 (z=vgm)+| 1- _g ' EAWSs that are described by Eq4.2) and (14). The newly

(17) derived system of equations is suitable for studying the for-
mation of light envelope solitons, trapping of light waves in

where y3=m?c*/e?. The dynamics of the solution of Eq. density cavities, and the collapse of light waves even in one

(16) for an arbitrary field distribution can be studied by usingdimension. The results of the present investigation are thus

the two integral§19] of the nonlinear Schidinger equation. ~ useful for understanding the nonlinear propagation of light

The integrals show that due to a nonlocal nonlinearity, thevaves in two-electron plasmas, such as those in space and

evolution of any initial distribution leads to the appearancelaser-produced plasmas.

of a singularity associated with the sharpening of the vector

potential profile.
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